PoLvFax: A Toolkit for Characterizing Multi-language Software

Wen Li
Washington State University
Pullman, WA, USA
li.wen@wsu.edu

ABSTRACT

Today’s software systems are mostly developed in multiple lan-
guages (i.e., multi-language software), yet tool support for under-
standing and assuring these systems is rare. To facilitate future re-
search on multi-language software engineering, this paper presents
PorYFAX, a toolkit that offers automated means for dataset collec-
tion from GitHub and two analysis utilities—a vulnerability-fixing
commit categorization tool (VCC) and a language interfacing mech-
anism identification/categorization tool (LIC). The VCC tool im-
mediately assists with assessing the vulnerability proneness of a
given multi-language project based on its version histories, while
the LIC tool enables dissection of the most important aspect of the
construction of multi-language systems. Application of POLYFAX to
7,113 multi-language projects with 12.6 million commits showed its
practical usefulness in terms of promising efficiency and accuracy.

CCS CONCEPTS

« Security and privacy — Software security engineering.

KEYWORDS

multi-language software, tool, language interfacing, vulnerability

ACM Reference Format:

Wen Li, Li Li, and Haipeng Cai. 2022. PoLyFax: A Toolkit for Characterizing
Multi-language Software. In Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering (ESEC/FSE "22), November 14-18, 2022, Singapore, Singapore.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3540250.3558925

1 INTRODUCTION

Large-scale studies of existing software projects, along with the cor-
responding code repositories (e.g., those on GitHub), have propelled
significant progress in understanding hence improving modern soft-
ware systems. Practical tool support for mining such projects and
analyzing those systems can be greatly instrumental [31], as they
allow researchers to focus more on the core research questions and
insights. For instance, tools for automated data collection/crawl-
ing, filtering/cleaning, and common characterization analyses are
essential for research based on mining open-source projects.

In fact, a large body of research aims to mine and study open-
source repositories [5, 6, 8, 18, 19, 25, 28-30, 32], enabled or at least

“Haipeng Cai is the corresponding author.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ESEC/FSE °22, November 14—18, 2022, Singapore, Singapore

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9413-0/22/11.

https://doi.org/10.1145/3540250.3558925

LiLi

Monash University
Melbourne, Victoria, Australia
lili@monash.edu

Haipeng Cai"
Washington State University
Pullman, WA, USA
haipeng.cai@wsu.edu

facilitated by the underlying characterization tools. However, few
of these studies [30] provided a commonly reusable set of data
collection and characterization utilities (e.g., for project profiling,
complete commits/source retrieval, etc.). Most importantly, existing
characterization tools (e.g., D2A [32] and VccFinder [28]) are largely
limited to single-language projects. Tools dealing with typically
multi-language programs (e.g., [7, 17] for Android apps with native
code and [10-13] for distributed systems often built with various
languages for different components) ended up only addressing part
of those systems that is written in one language (e.g., Java).

Yet the majority of today’s software systems are written in mul-
tiple languages (hence they are noted as multi-language software)—
for example, a recent prior study [23] confirmed that more than
80% of open-source projects on GitHub are developed with more
than one language. It is also found lately that multi-language soft-
ware is notably prone to security vulnerabilities mainly induced
by the interfacing between different languages used in a software
project [22]—in fact, this proneness has found correspondence to
cross-language vulnerabilities with severe consequences [24]. On
the other hand, tools supporting studies of multi-language soft-
ware (e.g., those for identifying language interfacing and assessing
proneness to vulnerabilities across languages) are critically lacking.

To fill this gap, we present POLYFAX, a toolkit for characterizing
multi-language projects on GitHub and dissecting the construction
of multi-language systems. PoLYFAx consists of three related tool-
s/modules: a crawler, a scrubber, and two analyzers. The crawler
retrieves project data per given criteria, including general properties
and historical commits (i.e., commit logs, authors, code snippets)
and sources. The scrubber supports data pre-processing to facilitate
further analysis. As two instances of such analyses, PoLYFAx in-
cludes a tool for vulnerability-fixing commit categorization (VCC)
and one for language-interfacing identification/categorization (LIC).
The VCC tool classifies a given commit as one that potentially fixes a
vulnerability of a particular class, based on fuzzy matching between
the commit log and keywords/phases summarized from CWE [1].
The LIC tool identifies the mechanisms in which the different lan-
guages used in a multi-language system interface with each other.

To assess its efficiency and effectiveness, we used PoLyFax to
characterize 7,113 projects with 12.6 million commits. It finished
crawling, scrubbing, and analyzing the 193.9GB data in 23.1, 1.1,
and 17.2 hours (1.47 for VCC and 2.5 for LIC), respectively. Our
evaluation of the two analyzers based on random sampling and
cross-validation showed that they achieved 80%+ precision and
recall. POLYFAX is the technical enabler of a recent study on the
vulnerability proneness of multi-language software [22] and ex-
pected to serve future studies of these systems. The VCC tool is
also immediately applicable to single-language projects.

A demo video for PoLYFAx is here and tool package here [20].

https://orcid.org/0003-0194-2115
https://orcid.org/0003-2990-1614
https://orcid.org/0002-5224-9970
https://doi.org/10.1145/3540250.3558925
https://doi.org/10.1145/3540250.3558925
https://youtu.be/AwcobaNu1NU
https://figshare.com/s/cb05b4968b0be7ed0f96

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

2 ARCHITECTURE

Figure 1 gives an overview
of PoLYFAx’s architecture. As
its primary input, POLYFAx re-
trieves open-source projects
from GitHub [4]; optionally, H
users can customize the con- Github
figuration as another input to
let PoLyFax only collect sam-
ples of interests.

With these inputs, PoLyFax performs data analysis with three
modules: Crawler, Scrubber and Analyzer. At first, the Crawler
grabs repository profiles, clones the projects, and retrieves histori-
cal commits to the specified local storage. Then, the Scrubber per-
forms pre-processing [16] of the textual information (e.g., project
descriptions, commit logs) out of all the project metadata.

Finally, the Analyzer executes vulnerability-fixing commit cat-
egorization (VCC) and language interfacing mechanism categoriza-
tion (LIC). VCC utilizes the FuzzyWuzzy technique [9] on commit
logs to classify the commits into three high-level vulnerability cat-
egories (i.e., Porous defenses, Risky resource management, and
Insecure interaction) [1]. LIC takes project sources as input and
scans them with a finite state machine (FSM) modeled on summaries
of language interaction patterns; it outputs a tuple of language in-
terfacing mechanisms for each project. After all of these analyses
complete, the Analyzer reports the results to users.

PolyFax:
[Scrubber| [Analyzer

[VCC-analyzer

metadata
Crawler
-
Configure Reports
Figure 1: Overview of PoLYFax.

[LIC-analyzer

3 DESIGN AND IMPLEMENTATION

This section describes the design and implementation of PoLyFax,
elaborating its three modules: crawler, scrubber, and analyzer.

3.1 Crawler

The Crawler searches
repositories using the
GitHub API [2], filter- Github
ing/grabbing reposito-
ries matching the cri-
teria as configured. Specifically, it consists of three sub-modules,
two Profile Crawlers (i.e., Crawler-by-Language and Crawler-by-
Domain) and a Commit Crawler, as shown in Figure 2.

1
Repository profiles|

Profile Crawler
Crawler
by-Language
Crawler
by-Domain

Figure 2: Overview of PoLyFax.

iii{

3.1.1 Profile Crawler. A specific configuration defines the cri-
teria of repository collection, specifying project attributes such
as popularity, primary languages, size, creation date, and updated
date. With these constraint values, the Profile Crawler constructs
profile requests following the manual of GitHub’s API [2].

Two profile crawlers are available in PoLYFAx for complementary
purposes. Crawler-by-Language grabs repositories according to
the user-specified languages while Crawler-by-Domain searches
and grabs repositories based on a given functionality-domain list.
When no languages or domains are specified, the crawler grabs
projects with stars greater than 1,000 (configurable) by default.

For the over 70 different project properties available on GitHub,
PoLyFaxX retrieves 7 (i.e., repository id, stargazers count, languages,
URL, pushed date, topics, and description). Users can customize to

Wen Li, Li Li, and Haipeng Cai

include more or less to meet varying analysis needs. As the output,
a set of repository profiles is stored in a database.

3.1.2 Commit Crawler. With the repository profiles as input,
Commit Crawler clones all the projects to the local storage, and
then retrieves (simply using git) and parses all the commit informa-
tion for each repository. This approach is much more efficient than
grabbing the commits using GitHub APIs due to the rate limits of
GitHub [2]. For each commit, PoLYFAx saves five primary features
(i.e., commit identifier, author, date, related issue (if existed), and
commit log); hence users can retrieve code changes and details of
issues for the commits for further, in-depth analyses.

3.2 Scrubber

Usually, an insightful analysis is not readily feasible by just directly
using the raw, potentially noisy (e.g., textual) information [16].
Hence, the Scrubber is responsible for data cleaning, taking the
raw text (e.g., project descriptions, commit logs) as input. This
pre-processing procedure transforms the text to accommodate a
natural language processing (NLP) algorithm via four steps while
leveraging NLTK for Python [3]: (a) remove all characters besides
numbers, letters, and commas from the input text; (b) tokenize
remaining text; (c) lemmatize each token; and (d) eliminate stop
words. This process results in a set of words that capture the critical
information for each text snippet.

3.3 Analyzer

The Analyzer analyzes the data collected from GitHub. Specifically
in PorYFAX, it includes two analysis tools: VCC and LIC.

3.3.1 Vulnerability-fixing commit categorization (VCC). We
developed VCC based on the following assumption: if the log of a
commit contains keywords/phrases indicating a class of vulnerabili-
ties, then we regard the commit as aiming to fix those vulnerabilities.
This is in the same spirit as prior work [29] identifying bug-fixing
commits based on keyword search in commit logs.

Based on the assumption, VCC works in two steps: (1) Vulnera-
bility keywords summarizing. By summarizing the top 25 most dan-
gerous CWEs [1], three high-level categories [26] are obtained as
Porous defenses (11 CWEs), Risky resource management (8 CWEs),
and Insecure interaction (6 CWEs). We applied the Scrubber to
the description for each category and extracted security-related
keywords or phrases. (2) Vulnerability keywords matching. Based
on the per-category keywords, we improved the FuzzyWuzzy tech-
nique [9] to classify commit logs as outlined in Algorithm 1.

The algorithm first retrieves these categories (line 2) and cleans
the given commit with pre-processText (line 3), followed by comput-
ing a match score between each category and the commit (lines 5-
21). Specifically, it retrieves (line 7) and traverse keywords/phrases
in each category (lines 8-20). Next, the commit log is split into
n-grams (lines 9-17) for a given phrase/keyword of length n and
matched against the phrase with FuzzyWuzzy (line 18). For better
precision, we use a minimal score of 90 as the threshold (lines 6)
and take the the highest score for all phrases of a category (lines 19-
20) as the score against that category (line 21). The best-matching
category is eventually returned as the vulnerability category for
the given commit (lines 22-23).

PoLyFax: Characterizing Multi-language Projects on GitHub

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

Algorithm 1: Identifying and classifying a vulnerability-fixing commit

Algorithm 2: Classifying a project by language interfacing mechanisms

Input: Cmmt: a commit including its log and code snippet
Output: vCat: the vulnerability category of Cmmt

1 Function classifyCommit (Cmmt)

2 VC « initVulCategory () /* Categories with keywords/phrases */
3 Cmmt « pre-processText (Cmmt) /* Tokenize, stemmatize, etc. */
4 CatScore — ¢

5 foreach Cat in VC do

6 Score < 90 /* The minimum match score as the threshold x/
7 PhraseList < Cat.phrases /x Keywords/phrases of category Cat x/
8 foreach Phrase in PhraseList do

9 Np « getWordNum (Phrase) ~ /* 1 if Phrase is a keyword */

10 N « getWordNum (Cmmt) /* Number of tokens */
11 xGramSet < ¢ /% The set of n-grams in Cmmt; n=Np */
12 Index < 0

13 while Index < N, do

14 End « Index + Np /% Split Cmm into n-grams */
15 xGramStr « Cmmt[Index:End]

16 xGramSet.append (xGramStr)

17 Index + +

/* Match Phrase against Cmm’s n-grams with FuzzyWuzzy x/

18 Result = FuzzyWuzzy.extractOne (Phrase, xGramSet)

19 if Result.score > Score then

20 | Score < Result.score

21 | CatScore[Cat] =Score /% Keep the best match score with Cat %/
22 vCat « maxScoreCat (CatScore) /x Take the best-matched category x/
23 | returnoCat

3.3.2 Language interface categorization (LIC). Through man-
ually checking respective languages’ official documentation, we
derived four basic language interfacing mechanisms:

(1) Foreign function invocation (FFI). With FFI, the host language
provides a foreign function interface to bridge its own semantics
and calling conventions and those of the guest language’s (e.g.,
Java Native Interface (JNI) in Java).

Implicit invocation (IMI). IMI is a cross-language interfacing
mechanism based on inter-process communications (e.g., re-
mote procedure call (RPC)).

Embodiment (EBD). With this mechanism, the languages are
interdependent and coexist with each other, with the code of
one language often embedded in that of another language (e.g.,
the interfacing among {css, html, javascript}).

Hidden interaction (HIT). With HIT, there is no explicit indica-
tion of direct interaction between languages, but there may be
indirect data connection between different languages.

2

~

—
w
=

—~
N
=

Then, we devised a rule-based classification model C based on
pattern matching and finite state machine (FSM) as follows:

C=(50,F8SR®), so,FeS, & :SXR*>S

In the model, sp and F represent the initial and end state respectively;
Sis the state set; R is the pattern set; ¢ is the state transition function
and @ is a regular expression engine. Given a sequence of inputs
I = {ly, L1,In}, C obtains a set of matched rules R = &(I); iff
6" (s0, R) = F then we say I is classified by C.

Language manuals

#include <Python. h>_ Py_Initialize. %

S
)| HIT classifier W
Repository| [Categories|) set

-

[}
| C Python | |~ eeeeee Ruby Java | |1
] classifier classifier classifier :
Classifier 4: ,
encode module | | 7y !
LICE ! FONIN
assifier *_: _ ___ Inport. *ctypes ctypes. CDLL @ |
seaim mesilE EBD classifier N >< '
set |
|
|
|

Figure 3: Language interfacing mechanism classification.

Input: P: a multi-language project repository
Output: Lp: the set of interfacing mechanism labels for P
1 Function classifyProject (P)

2 AC « getClassifiers () /* Convene all the classifiers in LICE */
3 R « compileRegex (AC) /* Compile all regexs in AC */
4 Rc « createMap (AC) /x Create a map from regexs to classifiers */
5 foreach file in P do

6 Rpr < scanRegex (R, file) /* Obtain matched regexs */
7 Pc < pickClassifier (Rc,Rpy) /* Fetch relevant classifiers x/
8 foreach C in Pc do

9 if classifyMatch (C, Rps) then

10 L | Lp.insert (C.label)

/* One mechanism recognized x/

11 if Lp==0 then

12 L Lp.insert (‘HIT") /x Not FFI, IMI, or EBD, so defaulted to HIT %/
13 | returnlp

14 Function classifyMatch (C, Ryy)

15 SQ «— initStateQueue (C) /x Initialize with the initial state of C %/
16 foreach ryy, in Ryr do

17 glen « Sg length

18 for k < 0 toglen —1do

19 S« So [k]

20 Ng < nextState (S, ;) /* State transition on input rp, */
21 if Ng == NULL then

22 L continue

23 if isFinalState (C, Ng) then

24 | return TRUE /% Reached a final state */
25 else

26 L So-push (Ng) /% Save context for a matched pattern x/
27 | return FALSE

Based on this model, we developed a language interfacing classi-
fication engine (LICE), as shown in Figure 3. LICE consists of two
collaborating modules: Classifier encode and Classifier scan.

(1) Classifier encode module (CEM). CEM aims to construct a chain
of classifier set (FFI, IMI, EBD, and HIT). For the FFI classifier set,
we manually summarized the interfacing code patterns for top
languages [14]; and 20 FFI classifiers were finally constructed
(e.g., c_java, c_python). For IMI, we implemented 7 classifiers
by investigating code patterns based on standard components
that support remote calls (e.g., D-bus [27], gRPC [15]). The EBD
classifier set consists of one classifier for languages {javascript,
css, html} as only these three languages are interdependent and
exist in the top language selections. The HIT set includes one
classifier for the projects without explicit code patterns.
Classifier scan module (CSM). With a repository as input, CSM
scans the source files one by one and works in a best-effort
fashion to obtain all language interfacing types. As shown in
Algorithm 2, after compiling regexs in all the available classi-
fiers (lines 2-4), PoLYFax finds matched patterns R = ®(I) (line
6) in each file (line 5) and picks relevant classifiers (line 7). If
a classifier accepts all the matched patterns (regexs), the cor-
responding mechanism is recognized (line 8-10). To determine
the acceptance, PoLyFAx runs the nFSM as a non-deterministic
finite automaton against those regexs (lines 15-27). Importantly,
it maintains a matching context (via the state queue Sp) to
obtain all possibly accepted regex sequences.

@

~

4 EVALUATION

We evaluate PoLyFax through the following two research questions:

(1) RQ1 What is the efficiency of PoLYFAX?
(2) RQ2 What is the accuracy of PoLYFax?

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

Table 1: Time cost of individual modules on analysis of 7,113

projects with 12.6 million commits.
Module [Crawler [Scrubber [VCC [LIC
Time cost (in hours) | 231 | 1.1 | 147 [25

Table 2: PoLYFax’s time costs with growing sample sizes (T-*
denotes “the time cost (in minutes) of ").

Subset No. | #Projects | Size (GB) | #Commits (K) | T-VCC | T-LIC
1 1,113 20.2 1,134 77.1 18.2
2 2,000 50.3 3,150 173.3 39.6
3 4,000 121.4 8,316 404.5 96.5

Experiment Setup. In the experiments, we ran the Crawler in
PoryFax without languages or domains specified; the default star
count for repositories was configured in [1000, 15000], and only
multi-language projects were saved. Both Crawlers and Ana-
lyzers in PoLyFax worked in single process. All experiments were
conducted on a 64-bit Ubuntu 18.04 with a 32-core CPU (AMD
Ryzen Threadripper 3970X) and 256 GB memory.

4.1 ROQ1: Efficiency of PoLyFax

With the default configuration, PoLYFax took a total of 41.4 hours
to finish the whole process of data collection and analysis, during
which 7,113 projects and 12.6 million commits were collected [21].
The time costs of individual modules are shown in Table 1. By
contrast, PoLYFAx is much more efficient since it could take about
three months to grab 12.6 million commits by GitHub API [2].

To further evaluate the relationship between the efficiency of the
two analyzers and the sample size, We divided the 7,113 samples
into three subsets and evaluated the time cost on the subsets as
shown in Table 2. From the results, we can see that the time cost
of VCC grows almost linearly as the number of projects or the
number of commits increases; a similar correlation can be found
between LIC and commit or project count. This shows that PoLyFax
is capable of (scalable for) large-scale repository mining.

4.2 RQ2: Accuracy of PoLyFax

To evaluate the effectiveness of PoLYFAx, we adopted a strategy of
random sampling followed by cross-validation.

Evaluation of VCC. To evaluate the accuracy of VCC, we ran-
domly sampled 50 projects and 500 commits per project from the
dataset and constructed ground truth manually for gauging the
precision and recall of VCC. Specifically, the authors independently
labeled the sampled commits following three steps: (1) read the
commit log, (2) check the associated code snippet, and (3) check
the issue comments if they exist.

It is worth noting that each ground-truth vulnerability-fixing
commit corresponds to an actual/confirmed vulnerability rather
than just keyword/phrase matches. After all the authors completed
independent labeling, they cross-validated and accepted the label for
each commit when all agreed. For cases with initial disagreement,
dedicated discussions were held to reach final decisions.

Table 3 summarizes the evaluation results. While not compli-
cated, our tool achieved a quite competitive level of accuracy com-
pared to the state-of-the-art peer tool D2A [32], which only reported
53% accuracy (based on a small manual study of only 57 commits in
total)—although we cannot make strong claims here since we did
not compare both tools on the same dataset. Moreover, D2A only
targets C/C++ projects while PoLyFax is language-independent;
hence it can be applied more broadly.

Wen Li, Li Li, and Haipeng Cai

Table 3: Cross-validation results of the VCC tool

Category % Commits | Precision | Recall
Porous defenses 43% 85% 89%
Risky resource management 48% 83% 81%
Insecure interaction 9% 91% 83%
Table 4: Cross-validation results of the LIC tool
Category %Projects %Precision %Recall
FFI 28% 85% 89%
IMI 69% 78% 82%
EBD 35% 96% 90%
HIT 11% 81% 84%

Evaluation of LIC. Per its design, LIC can identify a set of lan-
guage interfacing mechanisms for each input repository. For in-
stance, given a repository with language selection {java, c, python},
LIC may classify it as {FFI, II} because java interacts with c
through JNI while ¢ interacts with python through D-bus. To eval-
uate LIC’s precision, we randomly sampled 150 projects and con-
ducted a cross-validation procedure to measure the precision and
recall based on manual ground truth. According to the implemen-
tation described in Section 3.3.2, the evaluation results are based
on the samples’ top languages [14]. Table 4 presents the precision
and recall of LIC on the samples; since LICE summarized all the
possible interfacing mechanisms between top languages according
to the respective official manuals, it achieved high precision and
recall. Specifically, the precision ranged from a minimum of 78%
for IMI up to 96% for EBD, and the recall ranged from 82% to 90%.

4.3 Discussion

PoryFax offers a series of useful features, including repository
crawling, commit classification, and language interfacing catego-
rization. Its precision and recall indicate its potential of being appli-
cable for multiple purposes. For example, the VCC can be used for
empirical analysis as wells for providing abundant training data for
machine learning (or deep learning) based vulnerability detectors
since the code snippets, issues, or even CVEs of the commits can
be retrieved from the results of VCC. Moreover, it is not limited to
particular languages due to its language-independent nature.

For another example, results of the LIC may inform the design
of a cross-language vulnerability detector—algorithms specific to
each interfacing mechanism will be more precise than generic ones
for arbitrary interfacing mechanisms. For instance, for FFI, the
algorithm may identify vulnerabilities with more precise data flow
analysis based on foreign/native function calls.

5 CONCLUSION

We presented PoLyFax, a novel toolkit for characterizing multi-
language software. It offers the capabilities of mining the reposito-
ries of open-source multi-language projects. It also includes two
analysis tools, for vulnerability-fixing commit categorization and
language interfacing mechanism identification/categorization, re-
spectively. We empirically demonstrated PoLYFax’s merits in effi-
ciency and effectiveness against real-world open-source projects
on GitHub. PoLYFAX is open source and publicly available.

ACKNOWLEDGMENT

We thank our reviewers for constructive comments. This research
was supported by NSF (CCF-2146233) and ONR (N000142212111).

PoLyFax: Characterizing Multi-language Projects on GitHub

REFERENCES

(1]

[9

=

[10

(11

[12]

[13]

[14

[15]
[16]

2020. categories of security vulnerabilities. https://cwe.mitre.org/top25/archive/
2011/2011_cwe_sans_top25.pdf.

2020. GitHub Developer: provides APIs to retrive or query repositories in GitHub.
https://developer.github.com/v3.

2020. NLTK: platform for building Python programs to work with human lan-
guage data. https://www.nltk.org.

2021. GitHub: a US-based global company, provides hosting for software devel-
opment version control using Git. https://github.com/.

Emery D Berger, Celeste Hollenbeck, Petr Maj, Olga Vitek, and Jan Vitek. 2019.
On the impact of programming languages on code quality: a reproduction study.
ACM Transactions on Programming Languages and Systems (TOPLAS) 41, 4 (2019),
1-24.

Tegawendé F Bissyandé, Ferdian Thung, David Lo, Lingxiao Jiang, and Lau-
rent Réveillere. 2013. Popularity, interoperability, and impact of programming
languages in 100,000 open source projects. In 2013 IEEE 37th annual computer
software and applications conference. IEEE, 303-312.

Haipeng Cai and Barbara Ryder. 2017. DroidFax: A Toolkit for Systematic Charac-
terization of Android Applications. In International Conference on Software Main-
tenance and Evolution (ICSME). 643-647. https://doi.org/10.1109/ICSME.2017.35
Casey Casalnuovo, Yagnik Suchak, Baishakhi Ray, and Cindy Rubio-Gonzalez.
2017. Gitcproc: A tool for processing and classifying github commits. In Proceed-
ings of the 26th ACM SIGSOFT International Symposium on Software Testing and
Analysis. 396-399.

Adam Cohen. 2011. FuzzyWuzzy: Fuzzy string matching in python. ChairNerd
Blog 22 (2011).

Xiaoqin Fu and Haipeng Cai. 2019. A Dynamic Taint Analyzer for Distributed
Systems. In ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE). 1115-1119. https://doi.
org/10.1145/3338906.3341179

Xiaoqin Fu and Haipeng Cai. 2021. FlowDist: Multi-Staged Refinement-Based
Dynamic Information Flow Analysis for Distributed Software Systems. In 30th
USENIX Security Symposium (USENIX Security). 2093-2110.

Xiaoqin Fu, Haipeng Cai, and Li Li. 2020. Dads: Dynamic Slicing Continuously-
Running Distributed Programs with Budget Constraints. In ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE). 1566-1570.

Xiaoqin Fu, Boxiang Lin, and Haipeng Cai. 2022. DistFax: A Toolkit for Measuring
Interprocess Communications and Quality of Distributed Systems. In IEEE/ACM
International Conference on Software Engineering (ICSE). 51-55. https://doi.org/
10.1145/3510454.3516859

GitHub. 2020. The 2020 State of the OCTO——VERSE. https://octoverse.github.
com/#project-spotlight-tensorflow. (2020).

gRPC. 2020. gRPC Tutorial. https://grpc.io/docs/. (2020).

Emma Haddi, Xiaohui Liu, and Yong Shi. 2013. The role of text pre-processing in
sentiment analysis. Procedia Computer Science 17 (2013), 26-32.

[17] John Jenkins and Haipeng Cai. 2018. ICC-inspect: Supporting runtime inspection

of Android inter-component communications. In Proceedings of the 5th Interna-
tional Conference on Mobile Software Engineering and Systems. 80-83.

(18]

[19

[20

[21

[22

(23]

[24

[29

[30

[31

[32

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

Siim Karus and Harald Gall. 2011. A study of language usage evolution in open
source software. In Proceedings of the 8th Working Conference on Mining Software
Repositories. 13-22.

Frank Li and Vern Paxson. 2017. A large-scale empirical study of security patches.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security. 2201-2215.

Wen Li. 2022. PolyFax code repository. https://github.com/Daybreak2019/
PolyFax. (2022).

Wen Li. 2022. PolyFax dataset.
daybreak2019/fse22_vpomc. (2022).
Wen Li, Li Li, and Haipeng Cai. 2022. On the Vulnerability Proneness of Multi-
lingual Code. In ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE).

Wen Li, Na Meng, Li Li, and Haipeng Cai. 2021. Understanding language se-
lection in multi-language software projects on GitHub. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering: Companion Proceedings (ICSE-
Companion). IEEE, 256-257.

Wen Li, Jiang Ming, Xiapu Luo, and Haipeng Cai. 2022. PolyCruise: A Cross-
Language Dynamic Information Flow Analysis. In 31st USENIX Security Sympo-
sium (USENIX Security 22). Boston, MA, 2513-2530.

Philip Mayer and Alexander Bauer. 2015. An empirical analysis of the utilization
of multiple programming languages in open source projects. In Proceedings
of the 19th International Conference on Evaluation and Assessment in Software
Engineering. 1-10.

MITRE. 2020. Common Weakness Enumeration. http://cwe.mitre.org/.

Havoc Pennington. 2020. D-Bus Tutorial. https://dbus.freedesktop.org/doc/dbus-

tutorial.html. (2020).
Henning Perl, Sergej Dechand, Matthew Smith, Daniel Arp, Fabian Yamaguchi,

Konrad Rieck, Sascha Fahl, and Yasemin Acar. 2015. Vecfinder: Finding potential
vulnerabilities in open-source projects to assist code audits. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Security.
426-437.

Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. 2014.
A large scale study of programming languages and code quality in github. In
Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering. 155-165.

Alex Villazon, Haiyang Sun, Andrea Rosa, Eduardo Rosales, Daniele Bonetta,
Isabella Defilippis, Sergio Oporto, and Walter Binder. 2019. NAB: automated
large-scale multi-language dynamic program analysis in public code repositories.
In Proceedings Companion of the 2019 ACM SIGPLAN International Conference
on Systems, Programming, Languages, and Applications: Software for Humanity.
9-10.

Haoran Yang, Wen Li, and Haipeng Cai. 2022. Language-Agnostic Dynamic
Analysis of Multilingual Code: Promises, Pitfalls, and Prospects. In ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE).

Yunhui Zheng, Saurabh Pujar, Burn Lewis, Luca Buratti, Edward Epstein, Bo
Yang, Jim Laredo, Alessandro Morari, and Zhong Su. 2021. D2A: a dataset
built for Al-based vulnerability detection methods using differential analysis. In
2021 IEEE/ACM 43rd International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP). IEEE, 111-120.

https://hub.docker.com/repository/docker/

https://cwe.mitre.org/top25/archive/2011/2011_cwe_sans_top25.pdf
https://cwe.mitre.org/top25/archive/2011/2011_cwe_sans_top25.pdf
https://developer.github.com/v3
https://www.nltk.org
https://github.com/
https://doi.org/10.1109/ICSME.2017.35
https://doi.org/10.1145/3338906.3341179
https://doi.org/10.1145/3338906.3341179
https://doi.org/10.1145/3510454.3516859
https://doi.org/10.1145/3510454.3516859
https://octoverse.github.com/#project-spotlight-tensorflow
https://octoverse.github.com/#project-spotlight-tensorflow
https://grpc.io/docs/
https://github.com/Daybreak2019/PolyFax
https://github.com/Daybreak2019/PolyFax
https://hub.docker.com/repository/docker/daybreak2019/fse22_vpomc
https://hub.docker.com/repository/docker/daybreak2019/fse22_vpomc
http://cwe.mitre.org/
https://dbus.freedesktop.org/doc/dbus-tutorial.html
https://dbus.freedesktop.org/doc/dbus-tutorial.html

	Abstract
	1 Introduction
	2 Architecture
	3 Design and Implementation
	3.1 Crawler
	3.2 Scrubber
	3.3 Analyzer

	4 Evaluation
	4.1 RQ1: Efficiency of PolyFax
	4.2 RQ2: Accuracy of PolyFax
	4.3 Discussion

	5 Conclusion
	References

