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ABSTRACT

Analyzing multilingual code holistically is key to systematic quality
assurance of real-world software which is mostly developed in mul-

tiple computer languages. Toward such analyses, state-of-the-art

approaches propose an almost-fully language-agnosticmethodology

and apply it to dynamic dependence analysis/slicing of multilingual

code, showing great promises. We investigated this methodology

through a technical analysis followed by a replication study apply-

ing it to 10 real-world multilingual projects of diverse language

combinations. Our results revealed critical practicality (i.e., having

the levels of efficiency/scalability, precision, and extensibility to

various language combinations for practical use) challenges to the

methodology. Based on the results, we reflect on the underlying pit-
falls of the language-agnostic design that leads to such challenges.

Finally, looking forward to the prospects of dynamic analysis for

multilingual code, we identify a new research direction towards

better practicality and precision while not sacrificing extensibility

much, as supported by preliminary results. The key takeaway is

that pursuing fully language-agnostic analysis may be both im-

practical and unnecessary, and striving for a better balance between
language independence and practicality may be more fruitful.
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1 INTRODUCTION

Software failures are consequential and costly. A fundamental ap-

proach to assuring software quality hence mitigating these failures
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is to verify program behaviors via dynamic analysis [16, 17, 37].

For instance, among other such analyses, dynamic dependence

analysis [15, 26] (including one of its special forms, dynamic slic-

ing [36]), has empowered a range of applications in software quality

assurance (e.g., fault diagnosis [20, 25], security testing [33, 35, 47]).

Meanwhile, most (80+%) real-world software today is multilingual
(i.e., the program is written in multiple languages), according to re-

cent studies regardless of the sample size (e.g., around 1,000 [52] or

over 15,000 [63]) and data sources (e.g., at major companies [41] or

in the open-source world [57, 58]). The latest study confirmed the

status quo: only 18% of the studied systems use one language [50].

In this context, holistic analysis of multilingual code is key to

systematic quality assurance of real-world software systems [48].

To understand this critical need, consider a few specific cases. In

several samples of Android malware [12], the main app logic in one

language invoked malicious code in another language. For instance,

the game malware com.tinker.gameone [32] retrieves the user’s
Facebook credential through its C# code, and passes the private

data to an untrustworthy remote server in its Java code. Such issues

also have been found in the Android framework itself. For example,

as reported in CVE-2016-6691 [55], the framework called, from its

Java code via the Java native interface (JNI), the Qualcomm Wi-Fi
gbk2utf module in C++ which had GBK encoding errors.

Yet cross-language bugs are not limited to one language combi-

nation (e.g, Java-C) or one interfacing mechanism (e.g., JNI) [49],

albeit the only few prior relevant works available all targeted that

particular case (i.e., Java-C with JNI) [11, 39, 40, 46]. For instance,

recently Li et al. [51] demonstrated multiple cases of high-severity

security vulnerabilities of different kinds that happen across Python

and C code in popular open-source projects such as NumPy [61].

While these examples are about security defects, cross-language

correctness defects would happen the same way. The root cause is

common: the defects originated in the code written in one language
(i.e., one language unit) propagated to and were only exhibited in a
different language unit. It would be difficult for single-language tech-

niques/tools [19, 21–24, 28] to find these defects as their underlying

analyses are not holistic—they dismiss cross-language dependen-

cies and behaviors. Manual approaches (e.g., code review) are not

always practical because humans can get easily lost in complex,

large codebases like that of NumPy (one million SLOC) [61]. To ad-

dress this challenge, the state-of-the-art approach Orbs [13] and its

follow-upworks [14, 44, 45] propose and promote language-agnostic
dynamic analysis for multilingual code, focusing on (dynamic) pro-

gram slicing as a demonstrating case. Here being language-agnostic

means total language independence—the analysis is designed with-

out assuming (i.e., independently of) any specific knowledge about

the particular languages used in the multilingual software.
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Given the general diversity (in terms of varying language com-

binations used) of multilingual code, the promises of the language-

agnostic methodology advocated in these prior approaches are

highly meritorious, both intuitively (e.g., it would work for any

language combinations) and based on their evaluation results. Yet

as we arguably and empirically show, there are also major pitfalls

underneath this methodology that risk practicality. Ultimately, the

sensible pursuit should be on the balance between the language

independence of the analysis design and the practicality of the

analysis with respect to real-world multilingual software.

In this paper, we reflect on the language-agnostic methodology

as demonstrated in Orbs [13], the core in the line of works around

it. We first briefly revisit how it works and the promises it holds
(§2), followed by discussing the pitfalls as illustrated through a

replication study of Orbs against 10 randomly chosen multilin-

gual projects on GitHub (§3). We offer insights into our empirical

findings and lay out a new research direction towards alternative

tradeoffs between language independence and practicality that lead

to more practical solutions (§4), as we look forward to the prospects
of language-agnostic dynamic analysis of multilingual code.

Open science. Our artifact for this paper is available on figshare.

2 THE PROMISES

The state-of-the-art multilingual analysis, Orbs [13], achieves the

greatest language-independence to date—it instruments at the given

query (i.e., slicing criterion, which includes a code line number and

a variable on that line), and the rest of the analysis is language

agnostic. It works by tentatively deleting some other code lines,

recompiling and executing the remaining code, and checking if the

variable’s value changes—if so, those lines are deleted. This process

is repeated until no more lines can be deleted, and the remaining

code lines are considered the dynamic slice of the query.

Indeed, per its inner workings, Orbs only requires probing for

the run-time values of criterion variables in the enclosing language

unit. Other than this language-specific step, the analysis does not as-

sume any knowledge about (the syntax or semantics) the languages

involved in the multilingual code under analysis. This language-

agnostic design holds great promises, because multilingual software

is diverse and complex. Prior studies on successful projects in top

companies reported that there were 2,500 languages in use and

most applications were written in 2 to 15 languages [41]. Later

studies based on open-source projects found that more than half

of the samples used two or more languages. Most recently, further

studies showed that multilingual code uses a variety of language

combinations (e.g., java c++, python shell, javascript ruby
php) [50] and diverse mechanisms for interfacing between different

language units (e.g., one unit calling another via explicit calls to

foreign functions, one unit embedding another) [51].

With these levels of diversity and complexity, it is clearly desir-

able to have an analysis be agnostic of the underlying languages of

a given multilingual program, as it implies that the analysis can be

perfectly generalized to any given multilingual software without

additional (e.g., language-specific engineering) effort. The original

evaluation experiments for Orbs [13] consolidated the promises—it

worked reasonably well for not only small benchmarks (of a few

hundred lines of code), but also with (four source files chosen from)

a real-world multilingual project Bash (a Unix shell).
In sum, as in non-code-based approaches (e.g., entirely drop-

ping any code analysis) [18], the language-agnostic methodology

demonstrated via Orbs appeared to be highly promising.

3 THE PITFALLS

Despite its appealing promises, the language-agnostic design in-

stantiated inOrbs [13] could face practicality challenges with large-

scale, real-world multilingual systems. The largest-scale real-world

case studied in the original Orbs evaluation only considered a

quite small portion (four source files) of the project, rather than the

holistic system. As a result, the complexity dealt with may not be

representative of that of a whole, real-world multilingual system.

3.1 Technical Analysis

Technically, the design may suffer from a few limitations that make

it impractical: (1) since the code lines to remove must be deleted

together and lines are grouped speculatively [13] (despite aids of

simple heuristics [14, 45]), it can take numerous trials, resulting in

a long time to delete even one line (e.g., up to 1 minute per line for a

small program of 2KLOC [45]); (2) every single trial requires a com-

plete recompilation and then re-execution of the entire software,

another potential source of overhead and inefficiency; (3) it only

works with source code, because it relies on deleting the code at

source level and (re)building the source after deletion; and (4) it is

semi-automated as it requires users to write multiple scripts that fit

the inner workings of the analysis for each system under analysis.

As a result, the technique is not applicable where recompilation is

infeasible (e.g., source code is unavailable or incomplete).

The fact that the deleted lines are grouped speculatively has

another potential consequence—these lines may not be maximally

removable for each instance of the line-deletion operation. In par-

ticular, since the grouping is heuristic and tentative while having

to be done scrupulously to reduce the possibility of (re)compilation

failure, there may often be code lines that could be deleted but are

not comprehensively identified for deletion. The consequence is

that the resulting slice may include many code lines that should

not be in the slice (i.e., they should have been deleted since the

criterion is not dependent on them). In other words, the language-

agnostic methodology of Orbs may result in an excessive rate of

false positives (i.e., great impression).

Above all, the greatest barrier with the language-agnosticmethod-

ology in Orbs may be its efficiency and scalability. Follow-up

works achieved valuable improvements (e.g., enabling forward

slicing [44]—the original implementation of Orbs only works for

backward slicing, mitigating the efficiency issue [45]), but the prac-

ticality (efficiency/scalability wise) challenge remains due to the

unchanged nature of the language-agnostic methodology.

3.2 Empirical Analysis

To validate the above dissection and understand the gap, we per-

formed a replication study on Orbs using the artifact shared by the

authors in their paper [13].

Dataset:We targeted open-source multilingual projects on GitHub

that primarily used two or all of three programming languages:

https://figshare.com/s/a91abcaebd07464f4ea3
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Table 1: Efficiency results of Orbs on real-world systems.

Subject Language combination Code size #Qfin. Time (hrs)

Pyrasite [1] python c++ 1,580 10 2.67

Affinity [2] java c++ 4,677 0 24+
Pyjnius [3] python java 5,071 10 7.36

Snappy [4] java c++ shell 14,615 0 24+
Pysonar2 [5] java python 18,247 0 24+
Deap [6] python c 22,491 7 22.2

sbe [7] java c++ c 48,406 0 24+
brotli [8] c c# java javascript 51,073 0 24+
Vertx-web [9] java python 124,942 0 24+
Mongo [10] c++ javascript python 178,735 0 24+

Python, C/C++, and Java, because they are widely considered main-

stream languages and commonly ranked among the top-5 lists by

various sources (e.g., [? ]). Among all such projects, we sampled

those that are popular (i.e., with 1,000 or more stars) and active (i.e.,

updated within the last six months). We also dismissed projects

where the language unit in any of the three targeted languages

accounts for less than 1% of total project code size. Then, from the

resulting sample, we randomly selected 10 projects that cover all

possible combinations of the three primary languages, as outlined

in Table 1. The first column gives the project name and link.

Metrics: As per our technical analysis of the pitfalls, we mainly

examine the efficiency of Orbs in terms of the slicing time cost. For

each slicing criterion, we set a timeout of 24 hours, which is a reason-
ably large budget that a developer possibly affords in practice. In

addition, concerning the practical usefulness of the resulting slices,

we also look at the slice size—generally the smaller slices are more

desirable because developers may not afford inspecting a very-large

slice, especially given that Orbs itself does not provide additional

guidance (e.g., inspection priorities or ranking of statements in a

slice) for the post-slicing analysis.

Procedure:We have applied Orbs to the 10 chosen multilingual

systems, on a Ubuntu 18.04.5 LTS server with Intel(R) Xeon(R) CPU

E7- 4870 2.40GHz and 512GB RAM.

For each subject, we randomly picked one test to exercise it

and 10 queries (i.e., slicing criteria) to compute dynamic slices for,

such that each language unit contains the number of queries that

is proportional to the code size of the unit. For a given criterion, if

Orbs does not finish the slicing within 24 hours, we terminated it

and considered the case a timeout/failure.

Results: The overall efficiency results are summarized in Table 1.

The languages for which at least one query was picked are listed in

the second column, and the total code size of each subject in the

third. The fourth column (#Qfin.) indicates the number of queries

with which Orbs successfully finished the slicing in 24 hours.

As shown, only 3 (relatively small) subjects saw some queries

finished within the timeout, and Orbs timed out for any query

of the other subjects. For the only 27 (out of 100 total) queries it

returned a slice for, the average cost was 9.5 hours per query.

Table 2 outlines the further details on the 27 successfully finished

cases, including the slicing criterion (SC) no. (2nd column), the slice

size—the number of source lines of code (SLOC) in the slice (3rd

column), and the number of hours (hrs) spent on computing each

slice (last column). The slice ratio—the ratio of the slice size to the

total number of executed lines in the subject execution underlying

the slicing (4th column)—provides another perspective into the

slice size with respect to the worst-case slicing results (i.e., all the

executed lines are considered part of the slice).

Table 2: Detailed results

on the finished cases of

slicing. (Sb.: Subject; Sn.:

Slicing criterion no.; Ss.:

Slice size (SLOC); Sr.: Slice

ratio (%); Th.: Time (hrs)

Sb. Sn. Ss. Sr. Th.

P
y
r
a
s
i
t
e

1 132 11% 3.00

2 188 15% 3.18

3 188 15% 3.15

4 129 11% 3.10

5 129 11% 3.40

6 118 10% 1.94

7 118 10% 1.95

8 118 10% 1.93

9 135 11% 2.48

10 135 11% 2.60

P
y
j
n
i
u
s

1 2,962 83% 8.33

2 2,961 83% 8.29

3 2,521 71% 8.32

4 2,962 83% 8.36

5 2,612 73% 5.79

6 2,540 71% 8.42

7 2,977 84% 8.42

8 2,973 83% 8.42

9 2,341 66% 4.69

10 2,973 83% 4.53

D
e
a
p

1 5,460 53% 19.63

2 5,460 53% 19.84

3 5,460 53% 23.99

7 5,008 49% 21.99

8 5,008 49% 22.60

9 5,008 49% 23.28

10 5,008 49% 23.75

As in the originalOrbs evaluation,

we did not have the ground-truth slic-

ing results to compute precision and

recall. Yet the numbers of Table 2

show that Orbs is very likely to be

excessively imprecise—it produced

more than half of the executed code

lines in all of the slices for the two

relative large subjects.

3.3 Key Insights

Overall, the empirical results ap-

peared to corroborate the results

of our technical analysis (§3.1): the
language-agnostic design instanti-

ated inOrbs suffered critical efficien-

cy/scalability barriers and was sub-

ject to excessive imprecision.

Taking a closer look into the re-

sults, we observed that in all the fail-

ure (timeout) cases, Orbs was stuck

in unfruitful cycles between recompi-

lation and line deletion (because the

deletion causes failures to compile).

The underlying reason, as outlined

earlier, was that Orbs made heuristic attempts in identifying the

group of code lines to delete without even fully knowing about the

syntactic (not to mention semantic) relationships among those lines.

As a result, the majority of such attempts failed as the remaining

program with those lines deleted failed to compile.

Meanwhile, in the small percentage of cases in which it finished

the slicing within 24 hours, Orbs often identified excessively large

groups of code lines to delete. In particular, when heuristically form-

ing the group of code lines to delete, the deletion-line grouping

step often ended up also including the lines that have no depen-

dence relationships with the slicing criterion, The result was the

excessively-large dynamic slices, as seen especially in the cases of

Pyjnius. Apparently, there was no consistent correlation between

the degree of this imprecision and the total code size of the multi-

lingual system—e.g., Deap is much larger than Pyjnius (22.5 verus

5.1 KLOC), but the former saw much smaller slices produced by

Orbs (50% versus 80%) in terms of slice ratio.

In short, this replication study led us to the following insights:
(1) the need for almost no knowledge about any language makes

Orbs almost fully language-agnostic, yet that lack of knowledge

also led to totally uninformed hence opportunistic line deletion,

a core step in the design of the language-agnostic methodology;

thus, (2) a more practical design would need to strike a better

balance between language independence and efficiency/scalability

by utilizing slightly more knowledge about each language.

4 THE PROSPECTS

Following the insights obtained from our technical and empirical

analyses (§3.3), we believe it is necessary to explore other tradeoffs
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Figure 1: Envisioned high-level design for better balancing

language independence and analysis practicality.

between the language independence and practicality (in terms of ef-

ficiency/scalability primarily but also concerning practically useful

levels of precision). Note that language independence does matter

for a multilingual code analysis, because the more independent

the analysis is of the underlying languages, the more extensible/-

generalizable the analysis is to accommodate the diverse language

combinations in real-world multilingual systems. Thus, a total re-

laxation of the tradeoff with the (almost fully) language-agnostic

methodology as demonstrated in Orbs by entirely compromising

language independence to favor practicality is not a viable solution.

In general, we envision a new methodology for dynamic analysis

of multilingual code (as for distributed systems [34, 38]) to decouple
analysis (e.g., dependence computation or slicing) algorithm from data
harvesting (i.e., the process of collecting the program data needed by
the analysis). An overview of this decoupling design is depicted in

Figure 1. The key idea and rationale is that (1) the data harvesting is

realized via minimal, language-specific static analyses, relying on as

little knowledge about each particular language of the multilingual

code as possible, but the harvested data is language-independent

in terms of its format and semantics, and (2) the analysis algorithm

itself is that of an entirely language-agnostic dynamic analysis, as

enabled by the language independence of the data harvested. In this

way, we will overcome semantics disparity induced by language

heterogeneity through minimal language-specific effort, so as to

reach the practicality goal at the sweet spot in balancing language

independence and practicality. Conceptually, the language-specific

(static) analyses and the language-agnostic (dynamic) analysis are

bridged through an analysis data unification layer in between where
data harvesting will actually happen at runtime.

The key insight underlying this proposed design is that min-

imizing language-specific analysis hence maximizing language-

independence and analysis-extensibility (yet not losing scalability)

can be achieved by decoupling analysis algorithms from specific lan-
guage semantics through harvesting language-independent data. As a
proof of concept of this design, we built a cross-language dynamic

data dependence analyzer for Java-C programs on top of an earlier

work SensA [17]. We instrumented at every statement where a

variable is defined or used as in [27] to send at runtime the variable

value in a language-agnostic format to an analysis server through in-

terprocess communication (IPC). We used Soot [42] and LLVM [43]

for probing and identifying variable definitions and uses in the

Java and C unit, respectively. We then ran the instrumented code

twice, one normally to get the original execution and the other with

statements of interest being voided (i.e., operations there changed

to “no operation"). Once the analysis data is collected by the server,

it computes dependencies through differencing the original and

voided executions. Our experiments on a number of Java-C pro-

grams showed that the decoupling design worked successfully—it

correctly computed all dynamic data dependencies across the two

heterogeneous language units. The key here is that decoupling the

analysis data collection and the core analysis algorithm is realized

via IPC—which is by nature language-independent.

5 RELATEDWORK

Previous studies suggested that unifying or abstracting language

semantics is not scalable because it relies on heavyweight per-

language engineering [53, 54, 59, 60]. Converting code in differ-

ent languages into a uniform intermediate representation (IR) suf-

fers from misinterpretation/misconversion issues due to language-

semantics disparity. Also, the IR conversion for a given language

is not always practical, because it requires vast engineering ef-

fort [12]; these issues are further aggravated by the evolution of

each language—for instance, while LLVM [43] aims at a uniform IR

for several languages, only a couple of front ends (e.g., for C/C++)

received regular maintenance while those needed for the IR conver-

sion for other languages did not hence are not practically usable.

Meanwhile, a common or meta model [53, 60, 62] is not amenable

to dynamic analysis, since code represented in such models (e.g,

the uniform IR) cannot be executed anymore, nor are they able to

represent execution information of the original code.

Earlier approaches [53, 54, 56, 59, 60] to cross-language analy-

sis are mostly static while relying on substantial language-specific

modeling and/or engineering. Recently proposed dynamic cross-

language analysis [29] captures coarse-grained (file-level) depen-

dencies by modifying OS kernel for regression test selection. Ex-

tracting co-change patterns to derive file-level dependencies achieves

language independence by avoiding code analysis [30, 31], which

is difficult to extend for finer granularity.

6 CONCLUSION

As the growing majority of today’s software systems are built using

multiple languages, holistic analysis of multilingual code is essen-

tial for systematic software quality assurance. We revisited the

promises of a state-of-the-art methodology for dynamic analysis of

multilingual code that promotes such analyses be language-agnostic.
While conceptually appealing and promising, thismethodologymay

suffer technical limitations that impede its practical use against

real-world multilingual software systems. We thus proceeded with

an empirical analysis to demonstrate such pitfalls of the language-

agnostic methodology. Following the insights distilled from our

study, we envisioned a new methodology towards more practical

dynamic analysis of multilingual software.
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