Research Statement

Wen Li (li.wen@wsu.edu)

Motivation. The software development landscape now widely embraces the use of multiple program-
ming languages to harness their respective strengths, such as C’s efficiency and Python’s programma-
bility. This trend is evident in domains like Android OS and machine learning frameworks like Py-
Torch. However, this approach introduces challenges due to the complexity of multi-language systems.
Developers must grapple with vulnerabilities arising from this complexity, lacking effective tools for
identifying security threats.

Conventional techniques like program analysis and fuzzing primarily focus on single-language soft-
ware, limiting their effectiveness for vulnerability discovery. Program analysis struggles with under-
standing control and data flows across different languages, leading to incomplete vulnerability detec-
tion. Grey-box fuzzing faces challenges adapting to various languages, incomplete coverage, and en-
suring reproducibility of vulnerabilities. Additionally, runtime systems hosting multilingual software
compound the issue, as they are often built using multiple languages. This makes security clearance
within such runtimes a significant challenge in contemporary software development.

Summary. During my Ph.D. journey, I tackled the challenges of multi-language software vulnerabil-
ities with a multifaceted approach. I conducted empirical investigations into vulnerability susceptibil-
ity 2,14} 13]l, leading to the creation of PolyCruise [5], a dynamic cross-language information flow analysis

technique. PolyCruise effectively detected real-world vulnerabilities in open-source multi-language sys-
tems. Recognizing the importance of test input coverage, I developed PolyFuzz [6], a holistic gray-box
fuzzing methodology. By incorporating sensitivity analysis and whole-system coverage measurements,
PolyFuzz generated powerful test inputs, strengthening vulnerability identification. Shifting the fo-
cus to runtime security, I crafted PyRTFuzz [1ll, a two-level collaborative fuzzing framework for Python
interpreter runtimes. This contribution enhanced fundamental software system safeguarding.

Looking forward, my plan involves strengthening cross-language security testing by integrating
holistic fuzzing and comprehensive cross-language data flow facts. Furthermore, I will delve into com-
piler and language runtime testing. First, I intend to enhance collaborative fuzzing by merging program
analysis and semantic mining techniques. And then generalize these methodologies across diverse run-
times, encompassing platforms like JVM and JavaScript engines. Additionally, I am enthusiastic about
exploring the intersection of machine learning frameworks and runtimes. This convergence between
machine learning and security holds immense potential for pioneering research endeavors.

1 Current Research

In my Ph.D. research, I have undertaken significant projects across various domains. These projects
encompass a security analysis of application-level systems, including endeavors like PolyCruise and
PolyFuzz. Additionally, I've ventured into the realm of language runtimes with PyRTFuzz.

Cross-language Information Flow Analysis. Within the realm of multilingual systems, the inter-
action between different languages relies on diverse interfacing mechanisms [5, [7]. These complexities
create two main challenges for achieving comprehensive cross-language program analysis: (1) The first
challenge stems from varying semantics among the heterogeneous languages. Conventional single-
language methods can’t be directly applied due to these differences. It’s also impractical to conduct
separate analyses on individual language components and merge the outcomes. (2) The second chal-
lenge emphasizes scalability, especially for large-scale real-world systems. Multilingual systems often
encompass more extensive codebases compared to single-language systems.

To tackle the first challenge, I embarked on dynamic information flow analysis (DIFA), a method
that effectively overcomes the constraints of static semantic analysis. DIFA involves observing program
behaviors during execution, offering a means to navigate the intricacies arising from disparate language
semantics. Specifically, this dynamic analysis operates in a real-time, online manner directly within




the program’s memory. As the program runs, it dynamically computes information flow between pre-
determined sources and sinks, a process known as run-time information flow computation (IFC). The
outcomes of this computation materialize as flow facts, seamlessly integrated into an evolving dynamic
information flow graph (DIFG). Using the insights from DIFG as a foundation, it’s possible to create
applications specialized in detecting specific vulnerabilities.

To overcome the second challenge, I introduced static symbolic analysis using a custom intermedi-
ate representation called Language-Independent Symbolic Representation (LISR). The procedure ini-
tiates with lightweight analyses optimized for the particular programming language, converting code
segments into the language-agnostic LISR format. Following this, symbolic dependence analysis is em-
ployed on these LISRs in conjunction with source and sink lists for each code unit. LISRs’ inherent
language-independent quality facilitates the applicability of this analysis technique across diverse pro-
gramming languages. The insights gleaned from the symbolic dependence analysis guide a targeted
approach to instrumentation, minimizing the extent of required modifications and consequent impact
on runtime performance.

Being the pioneer of the cross-language dynamic information flow analysis approach, PolyCruise in-
tegrates a language-independent real-time data flow analysis guided by these dependencies, effectively
surmounting the challenges posed by language diversity. Additionally, PolyCruise has succeeded by
uncovering 14 previously unknown security vulnerabilities in real-world multilingual systems, includ-
ing well-known instances like NumPy. This impressive feat underscores the importance and practical
applicability of the approach.

Holistic Grey-box Fuzzing. In multi-language software analysis and testing, the coverage of test
inputs critically limits dynamic information flow analysis [5], which can be reduced through techniques
like grey-box fuzzing. However, existing fuzzing techniques are tailored exclusively for single-language
software, mostly focusing on C/C++. Even seemingly multilingual fuzzers target only one language
unit. Applying these fuzzers to multilingual code could treat other language units as black boxes,
disregarding cross-language interactions and significantly reducing the effectiveness of fuzzing.

Hence the endeavor to conduct comprehensive fuzzing on real-world multi-language systems encoun-
ters two significant challenges. The first challenge involves achieving extensive coverage while accom-
modating the extensibility of different programming languages. The second challenge centers on gen-
erating inputs capable of efficiently testing information flow across varied language units using greybox
fuzzing. To tackle the initial challenge, a specialized intermediate representation named SAIR is intro-
duced for measuring fuzzing metrics. A comprehensive static program analysis on this representation
reduces the need for language-specific analyses. This approach achieves broad and adaptable coverage.
To overcome the second challenge, PolyFuzz integrates sensitivity analysis-driven seed generation. This
involves training regression models to discern the connections between inputs and branch variables.
The trained models predict values for seed blocks with constant branch values as inputs; then, these
blocks are assembled into seeds to alter branch conditions effectively, thus enhancing fuzzing efficiency.

PolyFuzz is a leading holistic greybox fuzzer known for comprehensively testing multi-language sys-
tems. It’s flexible, accommodating various language combinations such as C, Python, and Java. Fur-
thermore, PolyFuzz consistently outperforms single-language fuzzers, achieving significant code cover-
age enhancements (10%-52.3%) and uncovering more bugs (1-10 vulnerabilities) across multi-language
and single-language programs. Impressively, PolyFuzz has discovered 14 previously unknown vulner-
abilities, underscoring its effectiveness.

Collaborative Fuzzing for Language Runtime. The security of the language runtime is crucial for
multi-language software hosting, as it provides essential services like memory management, code ex-
ecution, and resource access. Current approaches fail to test Python runtimes due to three primary
challenges. Firstly, comprehensive Python runtime fuzzing requires close collaboration between two
fuzzing levels, generating programs and concrete inputs, to thoroughly exercise interpreter-runtime
library interactions. Secondly, fuzzing the interpreter demands diverse yet valid Python applications.
However, achieving both requirements simultaneously, especially for Python, remains largely unknown.
Lastly, generating quality input values is challenging for application fuzzers in general, and even more
so for Python due to its dynamic typing, which hinders format-aware input generation essential for




effective Python application fuzzing.

To overcome these challenges, a two-level collaborative fuzzing approach integrates generation-based
and mutation-based techniques at Level-1 and Level-2, respectively. Operating within a holistic fuzzing
loop, this approach addresses Challenge 1 by utilizing shared coverage feedback.

At Level-1 of generation-based fuzzing, PyRTFuzz employs a unique approach using SLang, a script-
ing language incorporating elements from Python’s syntax, semantics, and features. This involves com-
bining selected primitives onto a Python runtime API in a random manner to form an application spec-
ification. This specification is then translated by the SLang compiler into a Python application with
diverse control flow complexities. Additionally, this strategy spans various runtime domains, which
improves the strength and thoroughness of the generated test inputs or applications. This effectively
addresses Challenge 2. At Level 2 of mutation-based fuzzing, a novel mutation strategy is presented.
This strategy considers the application input’s specific data types, utilizing insights from runtime API
descriptions to understand data types, format, and structure. Guided by the variable data types, this
specialized mutator generates suitable values customized for each runtime API, which significantly
improves the accuracy and efficacy of the mutation strategy, effectively addressing Challenge 3.

PyRTFuzz combines generation-based fuzzing at the compiler level and mutation-based fuzzing at
the application-testing level for the primary Python implementation (CPython). Through its usage,
PyRTFuzz identified 61 new, demonstrably exploitable bugs. These bugs span issues within the inter-
preter, most occurring in the runtime libraries. The findings underscored PyRTFuzz’s scalability, cost-
effectiveness, and potential for continued bug discovery. The collaborative two-level fuzzing approach
in PyRTFuzz holds promise for extending its application to other language runtimes, particularly those
using interpreted languages.

2 Future Research

Looking ahead, the widespread adoption of multi-language software is anticipated across various do-
mains. Ensuring the security of both the software and the hosting language runtimes becomes paramount
within these diverse domains. Expanding upon my current endeavors, my forthcoming objectives are
outlined as follows: Firstly, my unwavering commitment lies in advancing security testing for cross-
language applications. Subsequently, my focus shifts toward the refinement of collaborative fuzzing
techniques. This strategic enhancement aims to achieve a thorough testing framework for the Python
runtime and subsequently, to extrapolate this refined approach to encompass a broader spectrum of
language runtimes. Furthermore, I am dedicated to addressing the forefront of current interests. I
am actively immersed in the security analysis of AI compilers and runtimes, encompassing prominent
platforms such as PyTorch and MindSpore.

Cross-language Security Testing. PolyCruise and PolyFuzz have made significant advancements
in cross-language information flow analysis and comprehensive grey-box fuzzing. However, there is
still room for improving cross-language vulnerability discovery. While PolyFuzz has enhanced fuzzing
efficiency through semantic relationships and system coverage, its current limited semantics don’t ac-
curately model complex data flow information, which is crucial for vulnerability exploration, as prior
research indicates. To address this, my next focus is on seamlessly integrating cross-language informa-
tion flow analysis into holistic fuzzing. The plan involves developing methods like taint-guided holistic
fuzzing using insights from cross-language data flow analysis and exploring directed fuzzing based on
potentials identified by cross-language data flow analysis. These strategies aim to concentrate fuzzing
efforts on areas highlighted by data flow analysis as having higher vulnerability likelihood, thus opti-
mizing resources and intensifying security weakness identification.

Language Runtime Fuzzing. The SLang-based approach has successfully generated applications
with varying control flow complexities tailored to specific runtime APIs. Nevertheless, it falls short
in representing realistic software scenarios, mainly due to the lack of potential dependencies among
runtime APIs. This deficiency hampers the ability to simulate real-world application interactions, po-
tentially limiting its effectiveness in capturing intricate software behaviors. Additionally, comprehen-
sive testing of interpreters necessitates consideration of broader language features or characteristics




beyond control flow structures. Focusing solely on control flow could result in incomplete testing, over-
looking critical language behaviors.

Furthermore, the security of mainstream language compilers and runtimes hosting various lan-
guages has emerged as a critical concern within multi-language software. This challenge is particu-
larly pronounced in languages like JVM, JavaScript, Python, and their combined scenarios. Despite the
theoretical promise of the proposed approach to span different language runtimes, practical implemen-
tation encounters obstacles stemming from the nuanced differences among languages. Bridging the
gap between theoretical potential and practical application demands a focused endeavor to develop an
adaptable framework. This framework should be flexible to accommodate the unique attributes of di-
verse language ecosystems, thereby enhancing runtime security across the spectrum of multi-language
software and ensuring robust protection across varied language runtimes.

Al Compiler and Runtime Security Assurance. Much like traditional language compilers and run-
times catering to applications across various domains, the security of AI compilers and runtimes is
gaining increasing importance within artificial intelligence and machine learning. As Al technologies
advance and integrate into diverse applications, security assurance within AI compiler and runtime
environments becomes a central concern, encompassing several crucial dimensions. Firstly, these com-
pilers and runtimes often encounter sensitive information due to the nature of the data they handle.
Consequently, establishing secure processing environments is paramount to avert unauthorized data
exposure. Moreover, akin to conventional software, Al runtimes can exhibit vulnerabilities suscepti-
ble to exploitation by malicious actors. Furthermore, the gamut of security threats extends to issues
such as insecure execution or the injection of malicious models. These intricacies demand meticulous
consideration within the architecture and operation of Al runtimes. As the landscape of Al technol-
ogy evolves, secure compilers and runtimes will persist as a linchpin in constructing dependable and
credible Al systems across various domains. As a significant stride within the scope of my long-term
research, I am fully committed to investigating robust and feasible techniques that ensure the security
of Al compilers and runtimes.

References

[1] Wen Li. Pyrtfuzz: Detecting bugs in python runtimes via two-level collaborative fuzzing. https:
//github.com/awen-1i/PyRTFuzz, 2023.

[2] Wen Li, Li Li, and Haipeng Cai. On the vulnerability proneness of multilingual code. In Pro-
ceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 847-859, 2022.

[3] Wen Li, Li Li, and Haipeng Cai. Polyfax: a toolkit for characterizing multi-language software. In
Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, pages 1662—-1666, 2022.

[4] Wen Li, Austin Marino, Haoran Yang, Na Meng, Li Li, and Haipeng Cai. How are multilingual sys-
tems constructed: Characterizing language use and selection in open-source multilingual software.
ACM Transactions on Software Engineering and Methodology (TOSEM), 2023.

[5] Wen Li, Jiang Ming, Xiapu Luo, and Haipeng Cai. {PolyCruise}: A {Cross-Language} dynamic
information flow analysis. In 31st USENIX Security Symposium (USENIX Security 22), pages
2513-2530, 2022.

[6] Wen Li, Jinyang Ruan, Guangbei Yi, Long Cheng, Xiapu Luo, and Haipeng Cai. Polyfuzz: Holis-
tic greybox fuzzing of multi-language systems. In 32nd USENIX Security Symposium (USENIX
Security 23), 2023.

[7] Haoran Yang, Weile Lian, Shaowei Wang, and Haipeng Cai. Demystifying issues, challenges, and
solutions for multilingual software development. In 2023 IEEE /| ACM 45th International Conference
on Software Engineering (ICSE), pages 1840-1852. IEEE, 2023.


https://github.com/awen-li/PyRTFuzz
https://github.com/awen-li/PyRTFuzz

	Current Research
	Future Research

